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Take Home Message

• Static and dynamic charge and spin correlations are
at the center of not only manganite physics but of
transition metal oxide science.
– Resurgence of manganite physics is partially due to better

neutron and X-ray scattering techniques that allowed us to
find evidence for lattice/spin polarons.

• Time-of-flight techniques offer unique opportunities to
probe these materials.
– Complexity requires the survey of large volumes of

reciprocal space and ability to deal adeqiately with
dynamical effects.



Layered Manganites La2-2xSr1+xMn2O7
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Polaron Scattering in Manganites

ß Primary technique used is single crystal
Neutron and X-ray scattering.

ß Deviations from average crystal structure
leads to diffuse scattering.
ß Huang Scattering

ß Arises from long range lattice relaxation
around local defects.
ß Local distortion around a Mn3+

ß Concentrated around Bragg reflection
ß I~1/q2

ß Correlations between atomic displacements
leads to diffuse peaks with at particular Q-
vector.
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Charge and Orbital Ordering in LaSr2Mn2O7
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Layered Manganites La2-2xSr1+xMn2O7
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Charge and Orbital Correlations in FM
La1.2Sr1.8Mn2O7
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 CE-Correlations in La1.2Sr1.8Mn2O7 (x=0.4)
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Dynamic Polaron Correlations
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Polaronic Liquid to Glass Transition

• T>T*
– Dynamic CE-correlations
– Quasielastic (QE) width decreases linearly with T

• TC<T<T*
– CE coherence length does not diverge

• varies from 10-20Å
– CE-correlations freeze

• Elastic scattering increases below T*
• QE scattering decreases below T*

– QE width is ~constant (non-zero)
– Some dynamic CE-correlations are present

• T<TC
– In metallic state elastic and dynamic polaron-

correlations are not observe (no electron-phonon
coupling)

Argyriou et al. PRL 89,036401 (2002).



Frustration in Manganites

• In geometrical frustrated systems,
– Critical dynamics are 2nd order-like for T>Tg.
– Co-existence of both static and dynamic correlations.
– At Tg non-divergent order parameter.

?



•  Above T* quasielastic scattering indicates that CE-type
correlations have a finite lifetime.
– No evidence for diffusion of CE-type correlations.

What we are actually measuring ?
Dynamic CE correlations



Dynamic L-Correlations ?
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What we are actually measuring ?
Dynamic Lattice Relaxation

• Quasielastic Huang scattering indicates a dynamic lattice
fluctuations associated with hoping eg charges.
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Magnetic Rods in La1.2Sr1.8Mn2O7

Osborn et al. PRL 81,3964 (1998).
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Spin Correlations in Layered Manganites

• Energy integrated scans along l show modulations in
the magnetic diffuse scattering.

• The variation of intensity is modeled by spin-canting
between MnO2 sheets.

• Indicative of the competition between super- and
double exchange. Osborn et al. PRL 81,3964 (1998).
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Some Lessons I

• Short range correlations are key to the physics of many
materials.
– Needs for optimized diffuse scattering instrumentation

– Low background
– High efficiency detectors
– Large reciprocal space coverage

– CCD for X-rays
– TOF instruments for neutrons

– Good Q resolution
– X-rays better than neutrons

– Energy discrimination
– Very important background/static correlation function
– For total scattering one needs to be aware of what is

measured



Some Lessons II

• The time scale of correlations is very important and some
effort should be made to probe it in an experiment.
– X-ray scattering provides time averaged information (integration

window ~1eV).
– Energy integrated measurements provide important insights, but

not the whole picture.
– Can not see a freezing transition.

– For neutron scattering, analyzers can be used for inelastic
scattering rejection to provide the static correlation function.

– TAS is not an efficient way to measure diffuse scattering
– Need arrays analyzer/detectors
– Possibilities with statistical choppers….

– Alternatively, measure everything, sort it out later, using direct
geometry time of flight techniques.



Diffuse Scattering In Rectors
E2 at Hahn-Meitner Institut
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Polaron Scattering in La1.2Sr1.8Mn2O7
 Using SCD at LANSCE

D. N. Argyriou, et al. , Phys. Rev. B 60, 6200 (1999).
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MiDaS for Long Wavelength Target Station
at SNS
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• Effective rep rate 10Hz
• Dd/d=0.2 % at backscattering.
• Single crystal and powder samples



TOF/Monochromator Combination

Moderator
Guide

Frame 
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• Elastic/Inelastic discremination is simple.
•  Dw/w ~ l
• Excellent survey instrument in Q and w (Dw=1-20 meV)
• Nuclear and magnetic diffuse scattering



Conclusions

• In La1.2Sr1.8Mn2O7, we find evidence of a glass
transition at T*.
– T* is the temperature were polaronic correlations freeze
– Fundamental Temperature Scale in CMR manganites.

• The insulating state between Tc<T<T* in this
manganite arises from a frozen local scale charge
and orbitaly ordered state.

• Diffuse scattering has been critical in uncovering the
physics of manganites.

• Quasileastic scattering gives unique insight into
polaron dynamics.



Conclusions

• Instrumentation
– X-ray and neutron diffuse scattering are complementary.

• Should be used together whenever possible.
– Neutrons instrumentation should focus on the better energy

resolution that is achievable compared to X-rays scattering.

– At SNS one can go beyond just measuring the static
correlation function.

• Monochromator/pulsed beam combination
• Can be quite competitive compared to correlation shopper
• Can bridge the gap at low energies between a diffractometer

and other TOF spectrometers (like MAPS/MARI).


